(Relaxed) Product Structures of Graphs and Hypergraphs
نویسنده
چکیده
We investigate graphs and hypergraphs that have (relaxed) product structures. In the class of graphs, we discuss in detail RSP-relations, a relaxation of relations fulfilling the square property and therefore of the product relation σ, that identifies the copies of the prime factors of a graph w.r.t. the Cartesian product. For K2,3-free graphs finest RSP-relations can be computed in polynomial-time. In general, however, they are not unique and their number may even grow exponentially. Explicit constructions of such relations in complete and complete bipartite graphs are given. Furthermore, we establish the close connection of (well-behaved) RSP-relations to (quasi-)covers of graphs and equitable partitions. Thereby, we characterize the existence of non-trivial RSP-relations by means of the existence of spanning subgraphs that yield quasi-covers of the graph under investigation. We show, how equitable partitions on the vertex set of a graph G arise in a natural way from well-behaved RSP-relations on E(G). These partitions in turn give rise to quotient graphs that have rich product structure even if G itself is prime. This product structure of the quotient graph is still retained even for RSP-relations that are not well-behaved. Furthermore, we will see that a (finest) RSP-relation of a product graph can be obtained easily from (finest) RSP-relations on the prime factors w.r.t. certain products and in what manner the quotient graphs of the product w.r.t such an RSP-relation result from the quotient graphs of the factors and the respective product. In addition, we examine relations on the edge sets of hypergraphs that satisfy the grid property, the hypergraph analog of the square property. We introduce the strong and the relaxed grid property as variations of the grid property, the latter generalizing the relaxed square property. We thereby show, that many, although not all results for graphs and the (relaxed) square property can be transferred to hypergraphs. Similar to the graph case, any equivalence relation R on the edge set of a hypergraph H that satisfies the relaxed grid property induces a partition of the vertex set of H which in turn determines quotient hypergraphs that have non-trivial product structures. Besides, we introduce the notion of (Cartesian) hypergraph bundles, the analog of (Cartesian) graph bundles and point out the connection between the grid property and hypergraph bundles. Finally, we show that every connected thin hypergraph H has a unique prime factorization with respect to the normal and strong (hypergraph) product. Both products coincide with the usual strong graph product wheneverH is a graph. We introduce the notion of the Cartesian skeleton of hypergraphs as a natural generalization of the Cartesian skeleton of graphs and prove that it is uniquely defined for thin hypergraphs. Moreover, we show that the Cartesian skeleton of thin hypergraphs and its PFD w.r.t. the strong and the normal product can be computed in polynomial time.
منابع مشابه
CATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS
In this note by considering a complete lattice L, we define thenotion of an L-Fuzzy hyperrelation on a given non-empty set X. Then wedefine the concepts of (POM)L-Fuzzy graph, hypergraph and subhypergroupand obtain some related results. In particular we construct the categories ofthe above mentioned notions, and give a (full and faithful) functor form thecategory of (POM)L-Fuzzy subhypergroups ...
متن کاملGraph product of generalized Cayley graphs over polygroups
In this paper, we introduce a suitable generalization of Cayley graphs that is defined over polygroups (GCP-graph) and give some examples and properties. Then, we mention a generalization of NEPS that contains some known graph operations and apply to GCP-graphs. Finally, we prove that the product of GCP-graphs is again a GCP-graph.
متن کاملA note on vague graphs
In this paper, we introduce the notions of product vague graph, balanced product vague graph, irregularity and total irregularity of any irregular vague graphs and some results are presented. Also, density and balanced irregular vague graphs are discussed and some of their properties are established. Finally we give an application of vague digraphs.
متن کاملNarumi-Katayama Polynomial of Some Nano Structures
The Narumi-Katayama index is the first topological index defined by the product of some graph theoretical quantities. Let G be a simple graph. Narumi-Katayama index of G is defined as the product of the degrees of the vertices of G. In this paper, we define the Narumi-Katayama polynomial of G. Next, we investigate some properties of this polynomial for graphs and then, we obtain ...
متن کاملMinor-matching hypertree width
In this paper we present a new width measure for a tree decomposition, minor-matching hypertree width, μ-tw, for graphs and hypergraphs, such that bounding the width guarantees that set of maximal independent sets has a polynomially-sized restriction to each decomposition bag. The relaxed conditions of the decomposition allow a much wider class of graphs and hypergraphs of bounded width compare...
متن کامل